

CaPriDe Learning: Confidential and Private Decentralized Learning Based on Encryption-friendly Distillation Loss

Nurbek Tastan, Karthik Nandakumar MBZUAI, Abu-Dhabi, UAE

Introduction

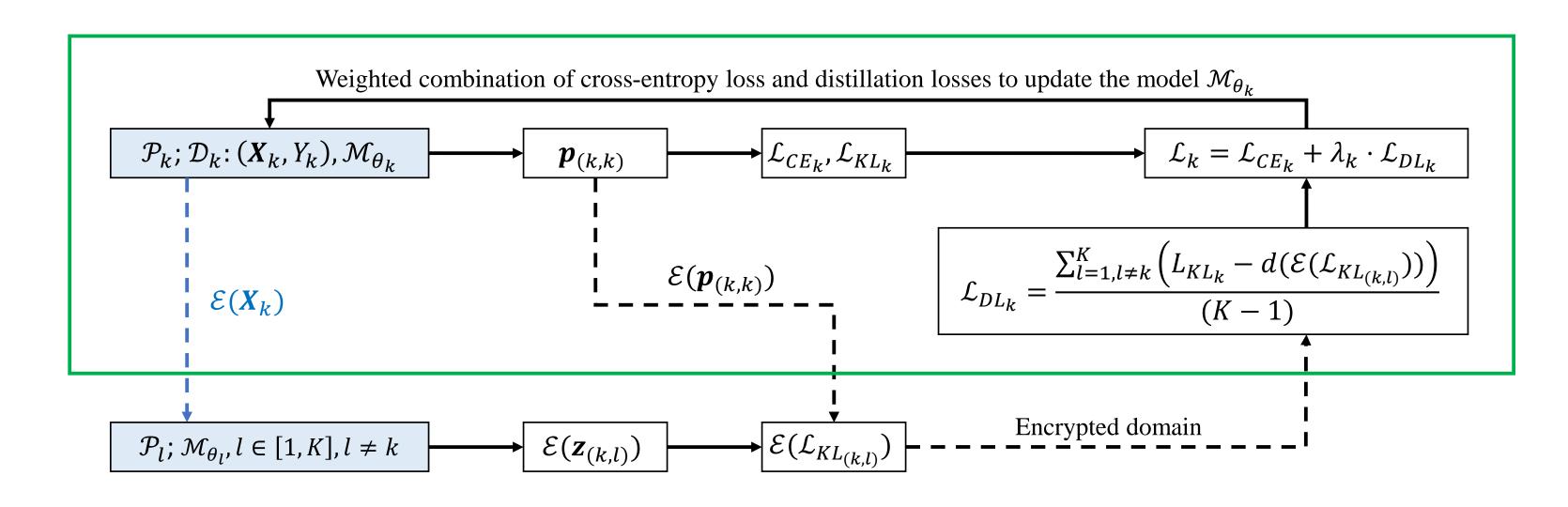
Motivation:

- Large volume of data required to train deep neural networks (DNNs) is seldom available to one single entity.
- Data sharing between entities or with third-party service providers is constrained by privacy concerns and regulations.
- Federated learning allows collaborative training of DNNs without data sharing, but has unacceptable utility-privacy trade-off.

Contributions:

- A collaborative learning algorithm based on encrypted inference and knowledge distillation to achieve confidentiality and privacy without any central orchestration and non-private shared data.
- An encryption-friendly distillation loss that estimates the approximate KL divergence between model predictions and a protocol to securely compute the loss in the encrypted domain.

Method



 $oldsymbol{p}_{(k,k)}$ - probability distribution computed using $\mathcal{M}_{ heta_k}$ on $oldsymbol{X}_k$ $\mathcal{E}(m{z}_{(k,l)})$ - logits vector computed using $\mathcal{M}_{ heta_l}$ on $\mathcal{E}(m{X}_k)$

Pairwise distillation loss:

$$\mathcal{L}_{DL_{(k,l)}} = \sum_{j=1}^{N_k} (\boldsymbol{p}_{j,(k,k)} \cdot \log \boldsymbol{p}_{j,(k,k)}) - \sum_{j=1}^{N_k} \boldsymbol{p}_{j,(k,k)} \cdot \left(\frac{\boldsymbol{z}_{j,(k,l)}}{T} - \log \left(\sum_{j'=1}^{N_k} \exp \left(\frac{\boldsymbol{z}_{j',(k,l)}}{T} \right) \right) \right)$$

The total distillation loss for \mathcal{P}_k :

FHE Results:

Setting

Homogeneous

Security Level

Number of slots

Time taken to encrypt one sample

Ciphertext size of one sample

Time taken to encrypt a batch of 32 samples

Encrypted inference of a batch of 32 samples

$$\mathcal{L}_{DL_k} = \frac{1}{K - 1} \sum_{l=1, l \neq k}^{K} \mathcal{L}_{DL_{(k,l)}}$$

Participant \mathcal{P}_k :

$$\mathcal{L}_k = \mathcal{L}_{CE_k} + \lambda_k \mathcal{L}_{DL_k}$$

CIFAR-10

128

16384

90 ms

29.101 KB

1.31 s

110.21 s

CaPriDe (KL)

92.155

CIFAR-100

128

16384

103 ms

29.152 KB

1.26 s

112.09 s

CaPriDe (L_2)

91.025

Experimental Setup

Datasets & Architectures:

Architecture	Dataset	Batch size	λ_k	Description
ResNet-18	CIFAR-10 CIFAR-100	128 128	50 50	60000 (10 classes), 32x32 images 60000 (100 classes), 32x32 images
	HAM10000	32	20	10015 (7 classes), 224x224 images

Fully Homomorphic Encryption (FHE) Algorithm:

Tile Tensor Framework that relies on the CKKS scheme (Aharoni et al., Complex Encoded Tile Tensors: Accelerating Encrypted Analytics, IEEE S&P, 2022)

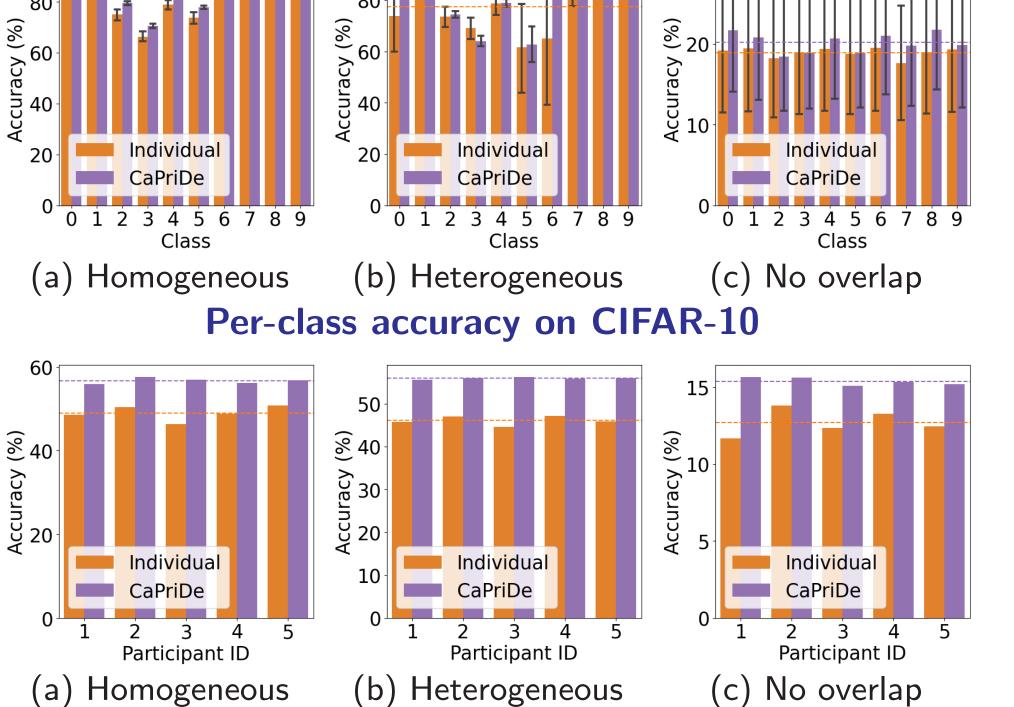
Data Partition:

- Homogeneous: each participant has an equal number of samples per class;
- Heterogeneous: each participant has an unequal number of samples determined randomly (both total number and number of samples per class);
- Non-overlapping class distribution: each participant has samples from a non-overlapping subset of classes.

Experiments & Results

Collaborative Learning Results:

Dataset	Setting	K	FedAvg	FedAvg + DP	CaPriDe
		2	3.46	-20.54	1.58
CIFAR-10	Homogeneous	5	9.22	-11.8	3.55
		10	15.44	2.58	5.52
		2	6.12	-17.04	0.93
	Heterogeneous	5	13.78	-7.84	5.06
		10	21.81	5.69	6.20
	No class overlap	2	29.85	11.08	8.16
CIFAR-100		2	7.08	-30.97	4.19
	Homogeneous	5	22.68	-13.81	9.10
		10	26.10	-0.11	11.69
		2	9.59	-28.89	6.28
	Heterogeneous	5	22.50	-13.26	9.23
		10	34.38	3.86	10.68
	No class overlap	2	19.40	5.14	7.75
HAM10000	Homogeneous	2	0.97	0.48	1.81
	Heterogeneous	2	1.93	-1.21	1.67



Per-participant accuracy on CIFAR-100

82.710 81.770 85.194 Homogeneous 72.580 68.272 Homogeneous 68.065 88.424 87.320 87.485 Heterogeneous 81.324 76.070 77.336 Heterogeneous 64.320 70.520 65.010 Heterogeneous

HAM10000

128

16384

619 ms

1.359 MB

15.57 s

896.12 s

Individual

91.050

Proposed approx. KL loss in comparison with L₂ loss