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MOTIVATION

e Federated Learning (FL) enables collaborative
training while preserving privacy.

e [ixtreme heterogeneity in client data slows
convergence and impacts performance.

e [ixisting FLL methods struggle when client data
distributions vary significantly.

e Solution: FedPeWS introduces a personalized
warmup phase, improving convergence and
model performance.

PROBLEM FORMULATION AND
CONTRIBUTIONS

Our goal is to minimize a sum-structured federated

learning optimization objective
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e \We propose FedPeWS, a novel FL approach that
mitigates heterogeneity-induced conflicts by
introducing a neuron-level personalized warmup
phase, improving generalization and convergence
speed.

e Our algorithm identifies optimal subnetworks for
each client by jointly learning personalized masks
and parameter updates.

e For small-scale FLL with known data distributions,
we introduce FedPeWS-Fixed, which eliminates
mask learning by assigning predefined
subnetworks, reducing computational overhead.

e [xtensive experiments on synthetic,

CIFAR10-MNIST, medical datasets (PathMNIST,
OCTMNIST, TissueMNIST), and CIFAR100
confirm FedPeW?S consistently improves
convergence and accuracy in both extreme
non-11D and 11D scenarios.

PROPOSED METHODOLOGY
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Conceptual illustration of training personalized subnetworks in FL.

Phase 1. Warmup e sample binary neuron masks m; from a Bernoulli
distribution with parameter 6;, i.e.,

m;(£) ~ Bernoulli(6;(£)),Vl € |h).

e map the neuron-level masks m; to parameter-level

e Clients train only a subset of the model (masked
neurons)

e Minimizes conflicts before global aggregation
masks m,.

(3 Procedure I. Mask training
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The update rule:
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Identification of subnetworks

1) Neuron-level score mask vectors s; € R" h < d.
2)G : R" — {0, 1}% - mask generation function that
generates the binary parameter-level masks m; from
neuron-level score mask vectors, i.e., m; = G(s;). G
consists of three steps:

t+1 t
T, —x, —1VaLly.

Phase 2. Standard FL

e convert s; into probabilities by applying a sigmoid
function, i.e. §; = o(s;), where 6; € [0, 1],

e Full model updates start after warmup, leading to
better convergence

IMPORTANT RESULT
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Neuron activation study on syn-
thetic dataset. The experi-
ment uses the FedPeWS-Fixed

method with W = 50 warmup
rounds, indicated by the verti-
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Visualization of accuracy and losson synthetic dataset
with N = 4 participants each having 1 distinct class.

Dataset CIFAR-MNIST {P-O-T}MNIST
Fedavg — 71.78 4= 0.66 52.83 £ 1.26
FedProx 72.27 £ 0.88 051.28 =1.03
SCAFFOLD 71.83 £0.24 53.00 4= 0.60
FedNova 71.63 £+ 0.98 53.00 = 0.83
MOON 71.84 +£1.09 02.10 = 0.19

FedAvg+PeWS 75.83 = 0.88 55.12 = 0.56

FedProx+PeWs 75.04 £ 0.85 54.67 £ 0.43

Comparison to the state-of-the-art algorithms in fed-
erated learning that tackle heterogeneity:.
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Performance visualization and sensitivity analysis on

CIFAR-MNIST dataset.
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