FedPeWS: Personalized Warmup via Subnetworks for Enhanced HETEROGENEOUS FEDERATED LEARNING

Nurbek Tastan¹, Samuel Horváth¹, Martin Takáč¹, Karthik Nandakumar^{1,2}

MOTIVATION

- Federated Learning (FL) enables collaborative training while preserving privacy.
- Extreme heterogeneity in client data slows convergence and impacts performance.
- Existing FL methods struggle when client data distributions vary significantly.
- **Solution:** FedPeWS introduces a personalized warmup phase, improving convergence and model performance.

PROBLEM FORMULATION AND CONTRIBUTIONS

Our goal is to minimize a sum-structured federated learning optimization objective

$$oldsymbol{x}^{\star} \leftarrow rgmin_{oldsymbol{x} \in \mathbb{R}^d} \left| f(oldsymbol{x}) \coloneqq rac{1}{N} \Sigma_{i=1}^N f_i(oldsymbol{x})
ight|, \ f_i(oldsymbol{x}) \coloneqq \mathbb{E}_{\xi \sim \mathcal{D}_i} [F_i(oldsymbol{x}, \xi)]$$

Key Contributions:

- We propose FedPeWS, a novel FL approach that mitigates heterogeneity-induced conflicts by introducing a neuron-level personalized warmup phase, improving generalization and convergence speed.
- Our algorithm identifies optimal subnetworks for each client by jointly learning personalized masks and parameter updates.
- For small-scale FL with known data distributions, we introduce FedPeWS-Fixed, which eliminates mask learning by assigning predefined subnetworks, reducing computational overhead.
- Extensive experiments on synthetic, CIFAR10-MNIST, medical datasets (PathMNIST, OCTMNIST, TissueMNIST), and CIFAR100 confirm FedPeWS consistently improves convergence and accuracy in both extreme non-IID and IID scenarios.

¹Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), ²Michigan State University (MSU)

Conceptual illustration of training personalized subnetworks in FL.

Phase 1. Warmup

- Clients train only a subset of the model (masked neurons)
- Minimizes conflicts before global aggregation

The update rule:

$$\boldsymbol{x}_{i}^{t} = \boldsymbol{x}_{i}^{t-1} - \eta_{\ell} \nabla f_{i} \left(\boldsymbol{x}_{i}^{t-1} \odot m_{i}^{t-1}, \boldsymbol{\xi}_{i}^{t-1} \right), \forall i, \forall t$$

Identification of subnetworks

(1) Neuron-level score mask vectors $s_i \in \mathbb{R}^h$, $h \ll d$. $(\mathbf{2}) \mathcal{G} : \mathbb{R}^h \to \{0,1\}^d$ - mask generation function that generates the binary parameter-level masks m_i from neuron-level score mask vectors, i.e., $m_i = \mathcal{G}(s_i)$. \mathcal{G} consists of three steps:

• convert s_i into probabilities by applying a sigmoid function, i.e. $\theta_i = \sigma(s_i)$, where $\theta_i \in [0, 1]^h$.

• sample binary neuron masks \tilde{m}_i from a Bernoulli distribution with parameter θ_i , i.e., $\widetilde{m}_i(\ell) \sim Bernoulli(\theta_i(\ell)), \forall \ell \in [h].$

• map the neuron-level masks \tilde{m}_i to parameter-level masks m_i .

3 Procedure I. Mask training

$$\mathcal{L}_{s} = f_{i}(\boldsymbol{x}_{i}^{t} \odot \mathcal{G}(s_{i}^{t}), \xi_{i}^{t}) - \lambda \| \sigma(s_{i}^{t}) - \theta_{g \setminus \{i\}}^{t} \|_{2}^{2};$$

$$s_{i}^{t+1} \leftarrow s_{i}^{t} - \eta_{s} \nabla_{s} \mathcal{L}_{s}.$$

4 Procedure II. Weight training $\mathcal{L}_{\boldsymbol{x}} = f_i(\boldsymbol{x}_i^t \odot \mathcal{G}(\boldsymbol{s}_i^t), \boldsymbol{\xi}_i^t); \quad \boldsymbol{x}_i^{t+1} \leftarrow \boldsymbol{x}_i^t - \eta_l \nabla_{\boldsymbol{x}} \mathcal{L}_{\boldsymbol{x}}.$

Phase 2. Standard FL

• Full model updates start after warmup, leading to better convergence

Neuron activation study on synthetic dataset. The experiment uses the FedPeWS-Fixed method with W = 50 warmup rounds, indicated by the vertical dashed line.

SC

Dataset	CIFAR-MNIST	{P-O-T}MNIST
Fedavg	71.78 ± 0.66	52.83 ± 1.26
FedProx	72.27 ± 0.88	51.28 ± 1.03
CAFFOLD	71.83 ± 0.24	53.05 ± 0.60
FedNova	71.63 ± 0.98	53.05 ± 0.83
MOON	71.84 ± 1.09	52.10 ± 0.19
Avg+PeWS	75.83 ± 0.88	55.12 ± 0.56
rox+PeWS	75.04 ± 0.85	54.67 ± 0.43

Comparison to the state-of-the-art algorithms in federated learning that tackle heterogeneity.

Performance visualization and sensitivity analysis on CIFAR-MNIST dataset.

Mohamed bin Zayed University of Artificial Intelligence