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Motivation
•Federated Learning (FL) enables collaborative

training while preserving privacy.
•Extreme heterogeneity in client data slows

convergence and impacts performance.
•Existing FL methods struggle when client data

distributions vary significantly.
•Solution: FedPeWS introduces a personalized

warmup phase, improving convergence and
model performance.

Problem Formulation and
Contributions

Our goal is to minimize a sum-structured federated
learning optimization objective

x⋆← arg min
x∈Rd


f (x) := 1

N
ΣN

i=1fi(x)

,

fi(x) := Eξ∼Di

Fi(x, ξ)


Key Contributions:
•We propose FedPeWS, a novel FL approach that

mitigates heterogeneity-induced conflicts by
introducing a neuron-level personalized warmup
phase, improving generalization and convergence
speed.
•Our algorithm identifies optimal subnetworks for

each client by jointly learning personalized masks
and parameter updates.
•For small-scale FL with known data distributions,

we introduce FedPeWS-Fixed, which eliminates
mask learning by assigning predefined
subnetworks, reducing computational overhead.
•Extensive experiments on synthetic,

CIFAR10-MNIST, medical datasets (PathMNIST,
OCTMNIST, TissueMNIST), and CIFAR100
confirm FedPeWS consistently improves
convergence and accuracy in both extreme
non-IID and IID scenarios.

Proposed Methodology

Conceptual illustration of training personalized subnetworks in FL.

Phase 1. Warmup
•Clients train only a subset of the model (masked

neurons)
•Minimizes conflicts before global aggregation
The update rule:
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Identification of subnetworks
1 Neuron-level score mask vectors si ∈ Rh, h≪ d.
2 G : Rh→ {0, 1}d - mask generation function that
generates the binary parameter-level masks mi from
neuron-level score mask vectors, i.e., mi = G(si). G
consists of three steps:
• convert si into probabilities by applying a sigmoid

function, i.e. θi = σ(si), where θi ∈ [0, 1]h.

• sample binary neuron masks m̃i from a Bernoulli
distribution with parameter θi, i.e.,
m̃i(ℓ) ∼ Bernoulli(θi(ℓ)),∀ℓ ∈ [h].
•map the neuron-level masks m̃i to parameter-level

masks mi.
3 Procedure I. Mask training
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4 Procedure II. Weight training
Lx = fi(xt

i ⊙ G(st
i), ξt

i); xt+1
i ← xt

i − ηl∇xLx.

Phase 2. Standard FL
•Full model updates start after warmup, leading to

better convergence

Important Result
Neuron activation study on syn-
thetic dataset. The experi-
ment uses the FedPeWS-Fixed
method with W = 50 warmup
rounds, indicated by the verti-
cal dashed line.

Experiments

Visualization of accuracy and losson synthetic dataset
with N = 4 participants each having 1 distinct class.

Dataset CIFAR-MNIST {P-O-T}MNIST
Fedavg 71.78± 0.66 52.83± 1.26

FedProx 72.27± 0.88 51.28± 1.03
SCAFFOLD 71.83± 0.24 53.05± 0.60

FedNova 71.63± 0.98 53.05± 0.83
MOON 71.84± 1.09 52.10± 0.19

FedAvg+PeWS 75.83± 0.88 55.12± 0.56
FedProx+PeWS 75.04± 0.85 54.67± 0.43

Comparison to the state-of-the-art algorithms in fed-
erated learning that tackle heterogeneity.

Performance visualization and sensitivity analysis on
CIFAR-MNIST dataset.


