

A Framework for Double-Blind Federated Adaptation of Foundation Models

Nurbek Tastan 🔶 Karthik Nandakumar 🍬 🐥 Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) 🔶 Michigan State University (MSU) 🗣 nurbek.tastan@mbzuai.ac.ae
Anndakum@msu.edu

Problem Definition

We consider a federated setting where:

Contributions

We introduce the **first framework for double-blind adaptation** of

- A learning service provider (LSP) holds a pre-trained FM.
- Multiple **data owners (clients)** hold task-specific labeled datasets.
- The goal is to **adapt the FM** for a downstream task collaboratively.

Double-Blind Constraints: (i) **Model Privacy:** Clients cannot access the FM. (ii) **Data Privacy:** The LSP cannot access the local data.

The goal is to jointly train a side adapter A_{θ} and classification head H_n to maximize performance while preserving privacy.

Methodology

Our pipeline consists of four stages:

- FHE-friendly Distillation. The FM distilled into FHE-compatible transformer blocks; nonlinear ops approximated via polynomials.
- Encrypted Inference with Permutations. Clients send encrypted inputs; server processes and permutes intermediate outputs.
- Local Learning via Parallel Adapters. Clients decrypt the permuted outputs and train

- foundation models, using fully homomorphic encryption (FHE) and secure multi-party computation (MPC).
- We design a modular adaptation pipeline: (i) distilling the FM into FHE-friendly blocks Θ (ii) interactive encrypted inference with a privacypreserving permutation scheme \bigcirc (iii) local training using low-rank parallel adapters \bigcirc (iv) secure MPC-based aggregation.

Strong performance on four datasets, robust under heterogeneity.

adapters/classifier without FM backprop.

• Secure Aggregation via MPC. Server aggregates client updates securely without gradient leakage.

Privacy Guarantee: The protocol maintains double-blind privacy throughout the collaborative learning process.

Illustration of the block decomposition and non-linear functions that need to be approximated (in red).

Experiments & Results

Accuracy Highlights. Our method outperforms linear probing, especially under strong heterogeneity. We achieve $\sim 94\%$ on CIFAR-10 with K = 5, close to full fine-tuning but with \bigcirc 300× fewer parameters.

Accuracy vs. no. of trainable parameters trade-off (x-axis in log scale),

Public dataset	Methods	Centralized	Federated
Fed-ISIC2019 (center=0) (InD)	Linear probing Full fine-tuning	$0.6599 \\ 0.7811$	$0.5856 \\ 0.6752$
	Ours	0.7090	0.6679
Tiny-Imagenet (OOD)	Linear probing Full fine-tuning	$0.6372 \\ 0.7817$	$0.5789 \\ 0.6985$
	Ours	0.7051	0.6481

Fed-ISIC2019 Results. Performance comparison of our method with baseline approaches on the Fed-ISIC2019 dataset with five clients, using two

illustrating the performance of the methods across three datasets.

Metric	Full fine-tuning	Ours	Linear probing
Trainable Parameters	$82\mathrm{M}$	$\sim 0.25 \mathrm{M}$	$< 0.01 { m M}$
Latency / Sample	$47 \mathrm{ms}$	$16 \mathrm{ms}$	$15 \mathrm{ms}$
GPU Memory	18 GB	9 GB	9 GB

Efficiency metrics compared to Full fine-tuning.

Nurbek Tastan MBZUAI – PhD Candidate in Machine Learning Abu Dhabi, United Arab Emirates

auxiliary datasets.

Methods	K = 10	K = 20	K = 50	Scalability analysis of the
Linear probing	0.9167	0.9142	0.9007	proposed method to baseline
Full fine-tuning	0.9739	0.9513	N/A	under a Dirichlet parameter
Ours	0.9446	0.9422	0.9287	of 1.0 for data partitioning.

Takeaways

- First double-blind FL framework enabling adaptation of FMs while protecting both model and data.
- Secure, scalable, and practical: achieves strong results on 4 datasets with up to 50 clients.
- Efficient: requires $\sim 300 \times$ fewer parameters than full fine-tuning.