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Contributions

Problem Definition

We consider a federated setting where:

We introduce the first framework for double-blind adaptation of

» A learning service provider (LSP) holds a pre-trained FM. 7)) and secure

labeled datasets.

foundation models, using fully homomorphic encryption (FH:

 Multiple data owners (clients) hold task-specific multi-party computation (MPC).

« The goal is to adapt the FM for a downstream task collaboratively:.

We design a modular adaptation pipeline: (i) distilling the FM into
FHE-friendly blocks @ (ii) interactive encrypted inference with a privacy-
preserving permutation scheme @ (iii) local training using low-rank parallel

adapters @ (iv) secure MPC-based aggregation.

Double-Blind Constraints: (i) Model Privacy: Clients cannot access
the FM. (ii) Data Privacy: The LSP cannot access the local data.

The goal is to jointly train a side adapter Ay and classification head
H, to maximize performance while preserving privacy.

|2 Strong performance on four datasets, robust under heterogeneity:.

Methodology

Our pipeline consists of four stages:

Original Foundation Model (FM) FHE-friendly Foundation Model Parallel Adapter
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Experiments & Results

Accuracy Highlights. Our method outperforms linear probing,

especially under strong heterogeneity. We achieve ~ 94% on CIFAR-10 with Public dataset Methods Centralized Federated
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illustrating the performance of the methods across three datasets.
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fliciency metrics compared to Full fine-tuning.

W Takeaways

» First double-blind FL framework enabling adaptation of F'Ms while
protecting both model and data.

Nurbek Tastan
MBZUAI — PhD Candidate in Machine Learning
Abu Dhabi, United Arab Emirates

» Secure, scalable, and practical: achieves strong results on 4 datasets
with up to 50 clients.

- Efficient: requires ~ 300X fewer parameters than tull fine-tuning.




