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Problem Definition and Contribution

Goal: Assessment of class-specific contributions of participants in a federated learning setting,
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Formulation

which aids in measuring the statistical heterogeneity. problem
Key Contributions:
 We introduce ShapFed, a novel method for precisely quantifying each participant’s impact on
the global model, including overall and class-specific contributions.
 Building upon our contribution assessment approach, we propose a new weighted aggregation
method (ShapFed-WA) that outperforms the conventional federated averaging algorithm.
* To enhance collaborative fairness, we personalize server-to-client updates based on contribu-
tions, ensuring that substantial contributors receive better updates than those with minimal input.
Method
Overview of our proposed ShapFed algorithm:
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Each participant ¢ transmits their locally computed iterates w; to the server. The server then,
1. computes class-specific Shapley values (CSSVs) using the last layer parameters (gradients) w,
11. aggregates the weights by employing normalized contribution values ~; for each participant ¢,
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tion values ;.

Experiments & Results

Experimental Setup:

Dataset Architecture  Batch size Comm. rounds Description
CIFAR-10 ResNet-34 128 50 60000 (10 classes)
Chest X-Ray  3-Conv & 3-FC 128 50 112120 (2 classes)
Fed-ISIC2019 EfficientNet B0 32 200 23247 (8 classes)

Data Partitioning:

Imbalanced partitioning: we use a custom function that relies on parameters x

and y, where x determines the proportion of data points received by each of the

y chosen participants. The remaining participants then share the remaining data

among themselves.

Heterogeneous partitioning:

— CIFAR-10: class 1 1s exclusively owned by participant 1, and the remaining 9
classes are partitioned equally among all participants.

— Chest X-Ray: with 5 participants scenario, class 1: [40%, 30%, 20%, 10%,
0%] and class 2: [0%, 10%, 20%, 30%, 40%].

Optimizer: SGD with learning rate 0.01.

Weighted Aggregation:
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Comparing FedAvg and ShapFed-WA on CIFAR10 under an imbalanced split
scenario (0.7, 1) with 4 participants.

broadcasts the personalized weights w; to each participant, using their individual, not-normalized contribu-

Contribution Assessment:

Problem: Standard cross-silo federated learning optimization
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Segment of the network utilized for evaluating
class-wise contributions:
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Weighted aggregation and personalization:

Aggregation Step Personalization

True- 0.03 El 002 Comparison of our proposed contribu-
' ' ' ' ' tion assessment algorithm with CGSV
CGSV - 0.01 N3N 0.04

and true Shapley value computations us-

CSSV (Ours) | 0.09 WP 001 ing ResNet-34 architecture on Chest
1 2 3 4 5

X-Ray dataset.
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Heatmap visualization of CSSVs for heterogeneous setting evalu-
ated on CIFAR-10 dataset.

Personalization (Fed-ISIC2019):
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(Left) The balanced accuracy of our methods (ShapFed-WA & ShapFed) vs
FedAvg. (Right) Per-participant accuracy on Fed-ISIC2019 dataset.

Setting P 1 P 2

Individual 67.2 25.7

423 31.0 185 15.6 —

FedAvg 654 409 572 593 515 562 | 0.63
ShapFed-WA | 69.3 443 650 63.1 548 612 | 0.62
ShapFed 68.5 444 61.9 604 40.6 532 | 0.84
Table for Fed-ISIC2019 experiment results. Project website.



